1.	What is	at is the isotope name of $^{68}_{29}$ Cu?								
	(A)	copper-29	(B)	copper-	39	(C)	copper-68	(D)	copper-97	
2. buckmin	Buckminsterfullerines are large molecules that resemble a see-through soccer ball. The molecules are composed entirely of carbon atoms. What is the chemical formula for a ninsterfullerene that has a molar mass of 841 g/mol?									
	(A)	C ₆₀	(B)	C ₇₀		(C)	C ₈₂₉	(D)	C ₈₅₃	
3.	What is	the molar mass of	of calciur	n hydrox	ride, <mark>Ca(</mark>	OH) ₂ ?				
	(A)	38.00 g/mol	(B)	58.10 g	/mol	(C)	74.10 g/mol	(D)	116.20 g/mol	
4.	How many calcium atoms are there in a 3.00 mol sample?									
	(A)	4.98×10^{-24}		(B)	2.01 ×	10 ²³				
	(C)	6.02×10^{23}		(D)	1.81 ×	10 ²⁴				
5.	What is the mass of 0.300 mol of $CaSO_4$ (molar mass = 136.15 g/mol)?									
	(A)	$2.20 \times 10^{-3} \text{ g}$;	(B)	40.8 g					
	(C)	48.9 g		(D)	4.54 ×	10 ² g				
6.	How ma	How many molecules of $C_6H_{12}O_6$ (molar mass = 180.18 g/mol) are present in a 5.50 g sample						50 g sample?		
	(A)	5.07×10^{-26}	(B)	3.05 ×	10-2	C)	1.84×10^{22}	(D)	1.97×10^{25}	
	7. Given the balanced chemical equation,									
	$4~\mathrm{Ag_{(s)}} + 2~\mathrm{H_2S_{(g)}} + ~\mathrm{O_{2(g)}} \rightarrow 2~\mathrm{Ag_2S_{(s)}} + ~2~\mathrm{H_2O_{(g)}}$									
		what volume of $H_2O_{(g)}$ should be produced at STP by the reaction of 0.208 mol of $Ag_{(g)}$ with ufficient quantities of $H_2S_{(g)}$ and $O_{2(g)}$?							Ag _(s) with	
	(A)	0.104 L	(B)	2.33 L		(C)	4.66 L	(D)	9.30 L	
8.	In a lab	activity, students	s react so	olid copp	er in a si	lver nitra	ate solution:			
	$2 \mathrm{AgNO_{3(aq)}} + \mathrm{Cu_{(s)}} \rightarrow 2 \mathrm{Ag_{(s)}} + \mathrm{Cu(NO_3)_{2(aq)}}$									
	If 5 mol of $AgNO_{3(aq)}$ is mixed with 3 mol of $Cu_{(s)}$, which is the limiting reagent?									
	(A)	$Ag_{(s)}$	(B)	AgNO ₃	B(aq)	(C)	$\operatorname{Cu}_{(\mathfrak{s})}$	(D)	$Cu(NO_3)_{2(aq)}$	
9.	How ma	any moles of CO ₂	ı _(g) are p	oroduced	by the c	omplete	combustion of 3.	5 mol of	C ₆ H _{14(l)} ?	
	$2 C_6 H_{14(l)} + 19 O_{2(g)} \rightarrow 12 CO_{2(g)} + 14 H_2 O_{(g)}$									
	(A)	3.5 mol	(B)	12 mol		(C)	21 mol	(D)	42 mol	
10.	Which t	erm best describ	es a solu	tion that	cannot	dissolve a	any more solute a	at a const	cant temperature?	
	(A)	dilute (B)	polyuns	saturated	l	(C)	saturated	(D)	unsaturated	
11.	What is the concentration of 0.250L solution that contains 2.50 g of $Ca_3(PO_4)_2$ (molar mass = 310.18 g/mol)?									
	(A)	$2.02 \times 10^{-3} \mathrm{m}$	nol/L		(B)	3.22 ×	10 ⁻² mol/L			
	(C)	31.0 mol/L			(D)	194 mo	l/L			

12. percen		deposits of gypsugypsum, CaSO ₄		nic hydrate, are l , is water?	ocated ir	n western Newfo	undland.	By mass, wha	ıt	
	(A)	6.210%	(B)	20.93%	(C)	66.67%	(D)	79.07%		
13.	What	mass of NaOH (m	ıolar ma	ss = 40.00 g/mol) is prese	ent in 0.250 L of a	a 0.100 m	nol/L sol	lution?	
	(A)	2.50×10^{-2}	g (B)	1.00 g	(C)	16.0 g	(D)	1.00 × 10) ² g	
14.				molar volume of der these condition		.4.8 L/mol . What	volume	would 4.85 >	< 10 ²³	
	(A)	0.0325 L	(B)	0.805 L	(C)	18.0 L	(D)	20.0 L		
15.	Which is the correct equation for the dissociation of potassium phosphate, $K_3PO_{4(s)}$?									
	(A)	$K_3PO_{4(s)} \rightarrow$	3K ⁺ _(aq)	+ PO _{4(aq)}						
	(B)	$K_3PO_{4(s)} \rightarrow$	$K_{3(aq)}^+$	$+ PO_{4(aq)}^{3-}$						
	(C)	$K_3PO_{4(s)} \rightarrow 3K^+_{(aq)} + P^{3-}_{(aq)} + 4O^{2-}_{(aq)}$								
	(D)	$K_3PO_{4(s)} \rightarrow$	K ³⁺	+ PO _{4(aq)}						
16.	Which	Which has low solubility in water?								
	(A)	$Ba(OH)_2$	(B)	CaSO ₄	(C)	$Cu(NO_3)_2$	(D)	MgCl ₂		
17.		is the concentrati O ₃) _{4(aq)} ?	ion of nit	trate ions in a 0.6	0 mol/L	solution of lead(IV) nitrat	re,		
	(A)	0.15 mol/L	(B)	0.60 mol/L	(C)	1.8 mol/L	(D)	2.4 mol/L		
18.	mixtur	After combining solutions of sodium carbonate and calcium nitrate, a student filtered the reaction mixture to collect a precipitate of calcium carbonate. Which occurs if the precipitate is weighed before it is completely dry?								
	(A)	% yield is high	er than i	t should be	(B)	% yield is low	er than it	should be		
	(C)	theoretical yie	ld is higl	ner than it should	be(D)	theoretical yie	ld is low	er than it shou	uld be	
19.	What i	is the number of	bonding	electrons in an at	tom of pl	nosphorus?				
	(A)	1	(B)	2	(C)	3	(D)	4		
20.	Which	bond is polar?								
	(A)	C – Br	(B)	C – C	(C)	C – I	(D)	C – S		
21.	Which	substance has th	e highe:	st melting point?						
	(A)	Fe	(B)	$\rm H_2O$	(C)	NaCl	(D)	${\rm SiO}_2$		
22.	Which	substance shoul	d have h	igh solubility in v	vater?					
	(A)	CCl ₄	(B)	$\mathrm{CH_4}$	(C)	CH ₃ Cl	(D)	CO_2		
23.	Which	molecular shape		rated by this diag H HC H	ram?					

pyramidal

(C)

tetrahedral

(D)

(B)

bent

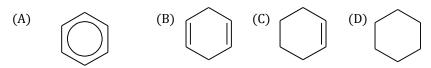
(A)

trigonal planar

- 24. What is the shape around the central atom in CSF₂?
 - (A) bent
- (B) pyramidal
- (C) tetrahedral
- (D) trigonal planar
- 25. Which Lewis Diagram best represents sodium nitride?
 - (A) Na: N: Na
- (B) Na Na Na
- (C) [Na]⁺
 [Na]⁺[:N:]³⁻
 [Na]⁺
- (D) [Na]
 [Na] [Na]
 [Na]
- 26. Which bond is most polar?
 - (A) S-Br
- (B) S-H
- (C) S-I
- (D) S-N
- 27. Which substance experiences hydrogen bonding forces of attraction?
 - (A) $CH_3Br_{(g)}$
- (B) CH₃Cl₍₁₎
- (C) $CH_3I_{(g)}$
- (D) CH₃OH₍₁₎

- 28. Which best describes metallic bonding?
 - (A) the attraction of oppositely charged ions
 - (B) the attraction of positive ions for mobile valence electrons
 - (C) the attraction of positive nuclei for shared pairs of electrons
 - (D) the attraction of opposite dipoles of neighbouring molecules
- 29. A student has two unknown substances, X and Y. Substance X **does not** conduct electricity as a solid or a liquid. Substance Y **does** conduct electricity as a solid and a liquid. What would be the most likely identities of substances X and Y?

	X	Y
(A)	Fe _(s)	SiC _(s)
(B)	$\mathrm{NaI}_{(s)}$	$C_6H_{12}O_{6(S)}$
(C)	$Ca(OH)_{2(s)}$	I _{2(s)}
(D)	$C_{30}H_{62(s)}$	Pb _(s)


- 30. Which substance has the strongest London dispersion forces?
 - (A) CO_2
- (B) HF
- (C) H_2O
- (D) NH₃
- 31. An unknown substance was found to be hard. It had a high melting point and conducted electricity when dissolved in water. What is the identity of the unknown solid?
 - (A) $C_6H_{12}O_6$
- (B) FeCl₃
- (C) SiC
- (D) **V**

- 32. Which compound is organic?
 - (A) CH₃OH
- (B) CaCO₃
- (C) NaClO₃
- (D) NCl₃

- 33. Which is an alkane?
 - (A) benzene
- (B) ethyne
- (C) hexene
- (D) propane

- 34. Which is a hydrocarbon?
 - (A) CH₃COOH
- (B) CH₃OH
- (C) CH₄
- (D) CH_3Cl

35. Which is benzene?

36. Which represents a carboxylic acid?

- (C) O (D) O || $H_3C-C-CH_3$ $H_3C-C-O-CH_3$

37. Which is a structural isomer of cyclopentane?

- (A) cyclopentene (B) methylbutane
- (C) methylcyclobutane (D) methylpropane

38. Which is the correct name for the structure below?

- (A) 3,4-dimethyl-1-pentene (B) 2,3-dimethyl-4-pentene
- (C) 3,4-dimethyl-2-pentene (D) 2,3-dimethyl-5-pentene
- 39. A student picks up a bottle containing four hydrocarbons. If the cover is left off the bottle, which hydrocarbon will vaporize first?
 - (A) methylbutane (B) 2-heptene
 - (C) hexane (D) 3,3,4,4-tetramethyldecane
- 40. Which substance reacts with methanol to produce the compound below?

- (A) ethanoic acid (B) ethanol
- (C) propanol (D) propanoic acid

4 41. a. Percent composition analysis reveals that a compound is 71.06% cobalt and 28.94% oxygen. Determine the empirical formula.

- b. A compound has a molar mass of 84.18 g/mol. Percent composition analysis revealed that the compound has an empirical formula of ${\bf C_2H_4}$. Determine the molecular formula of the compound.
- 3 c. Calculate the volume of 10.0 g of nitrogen dioxide, $NO_{2(g)}$ at STP.
- d. (i) Determine the volume of a 2.00 mol/L KNO_{3(aq)} solution required to make 250.0 mL of a 0.200 mol/L KNO_{3(aq)} solution.
- 2 (ii) Outline the steps you would use to prepare this new solution.
- e. (i) A student reacts $50.0 \, \text{g}$ of $\text{SiO}_{2(s)}$ with excess $\text{HF}_{(aq)}$. Calculate the theoretical yield of $\text{H}_2\text{O}_{(l)}$ in grams.

$$SiO_{2(s)} + 4HF_{(aq)} \rightarrow SiF_{4(g)} + 2H_2O_{(l)}$$

- 2 (ii) If the actual yield of $H_2O_{(l)}$ produced in part (i) was 24.6 g, determine the percent yield.
- f. A student discovered a bottle which contains a clear colorless solution. The label on the bottle, which was partially removed, read "_____ nitrate". The student tested two samples of the solution to determine the compound.

In test tube A the student added a few drops of $NaCl_{(aq)}$ and a precipitate formed.

In test tube B the student added a few drops of $Na_2SO_{4(aq)}$ and a precipitate formed.

What are two possible names for the solution in the bottle? Explain.

- g. Naturally occurring magnesium exists as a mixture of three isotopes. Mg-24 has an atomic mass of 23.985 amu and a relative abundance of 78.70 %. Mg-25 has an atomic mass of 24.985 amu and a relative abundance of 10.13%. The average atomic mass of magnesium is 24.31 amu. Calculate the atomic mass of the remaining isotope.
 - 42. a. For the molecule CH_3F :
- 2 (i) Draw the Lewis dot diagram.
- 2 (ii) **Draw** the VSEPR shape diagram and provide the name of the shape around the central atom.
- 2 (iii) Is CH_3F a polar molecule? Explain.
 - b. For each pair of substances, predict which will have the higher boiling point.Justify each prediction.
- 2 (i) CF₄ or CBr₄
- 2 (ii) SiO₂ or Pb
- 2 (iii) CH₄ or NaCl
- c. Which of the six substances in (b) has the lowest boiling point? _____
- d. A molecule consists of carbon, nitrogen, and hydrogen. It has one multiple bond, one carbon atom and one nitrogen atom.

Draw two possible Lewis diagrams for this molecule.

43. a. **Name** each compound using the IUPAC naming rules.

2 (i)
$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{H_3C-C} \\ \hline{=} \mathsf{C} \\ \mathsf{-CH_2-CH_2-CH_2-CH_3} \\ \mathsf{CH_3} \end{array}$$

Name:

Name:

2

Name:

- b. Draw a structural diagram for each compound.
- 2 (i) 3-ethylheptane
- 2 (ii) butanal
- 2 (iii) 3-methyl-2-hexanol
- 4 c. Ethene reacts with hydrogen gas to produce Compound A.

Ethene
$$+ H_2(g) \rightarrow A$$

Compound A reacts with fluorine gas to produce Compound B and Compound C.

$$A + F_2(g) \rightarrow B + C$$

Use structural diagrams to identify Compounds A, B, and C.