\qquad
Part A: Multiple Choice (5 marks)
Use the balanced chemical equation below to answer questions 1-3.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

(1) How many moles of hydrogen will combine with 2.00 mol of nitrogen?
(a) 0.666 mol
(b) 2.00 mol
(c) 3.00 mol
(d) 6.00 mol
(2) If 3 moles of nitrogen gas are reacted with excess hydrogen gas, how many moles of NH_{3} are produced?
(a) 3 moles
(b) 6 moles
(c) 6.67 moles
(d) 10 moles
(3) If 6 moles of hydrogen gas are reacted with excess nitrogen gas, how many moles of NH_{3} are produced?
(a) 3 moles
(b) 4 moles
(c) 9 moles
(d) 12 moles
(4) Given the reaction below, what is the mole ratio if you are given the mass of CaCl_{2} and are looking for the mass of NaCl ?

$$
\mathrm{NaOH}+\mathrm{CaCl}_{2} \rightarrow \mathrm{NaCl}+\mathrm{Ca}(\mathrm{OH})_{2}
$$

(a) $\frac{1}{1}$
(b) $\frac{1}{2}$
(c) $\frac{2}{1}$
(d) $\frac{2}{2}$
(5) An experiment is conducted to find the formula of a hydrate of lead (II) nitrate. $\left(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{XH}_{2} \mathrm{O}\right)$. The following mass data was collected:

Mass of empty beaker	12.65 g
Mass of beaker $+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \bullet \mathrm{XH}_{2} \mathrm{O}$ (before heating)	50.61 g
Mass of beaker $+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ (after heating)	38.98 g

What mass of water was lost from the sample?
(a) 11.63 g
(b) 26.33 g
(c) 37.96 g
(d) 38.98 g

Part B: Short Answer (10 Marks)

(1) Calculate the mass of cobalt(III) oxide that will be produced when 2.60 g of cobalt metal reacts with excess oxygen gas according to the equation below. (4)

$$
\mathrm{Co}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Co}_{2} \mathrm{O}_{3(\mathrm{~s})}
$$

\qquad
(2) An experiment is conducted to find the formula of a hydrated calcium chloride. $\left(\mathrm{CaCl}_{2} \bullet \mathrm{XH}_{2} \mathrm{O}\right)$. The following mass data was collected:

Mass of empty beaker	71.26 g
Mass of beaker $+\mathrm{CaCl}_{2} \bullet \mathrm{XH}_{2} \mathrm{O}$ (before heating)	80.75 g
Mass of beaker $+\mathrm{CaCl}_{2}$ (after heating)	75.70 g

(a) Complete the following table [1]

Mass of $\mathrm{CaCl}_{2} \bullet \mathrm{XH}_{2} \mathrm{O}$ used	
Mass of CaCl_{2} left after heating	
Mass of water lost	

(b) Find the number of moles of water that was lost by heating [1]
(c) Find the number of moles of calcium chloride left after heating [2]
(d) Use your answers from (b) and (c) above to find the formula of the hydrate [2]
(3) Silver metal may be precipitated from a solution of silver nitrate using copper metal:

$$
\mathrm{Cu}(\mathrm{~s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})
$$

(a) If 10.0 g of copper metal is reacted with 30.0 g of silver nitrate, determine the mass of silver produced by finding the limiting reagent. (6)
(b) If 20.0 g of silver metal is collected in the lab, calculate the $\%$ yield of this reaction (2)

