Chemistry 2202sem Quiz March 5, 2013

Name:

Part A: Multiple Choice (5 marks)

Use the balanced chemical equation below to answer questions 1-3.

$N_2(g) + 3 H_2(g) \rightarrow 2 N$	√H3(g)
-------------------------------------	--------

(1) How many moles of hydrogen will combine with 2.00 mol of nitrogen?(a) 0.666 mol(b) 2.00 mol

	$\langle \rangle$		
(c) 3.00 mol	(d)	6.00	mol

(2) If 3 moles of nitrogen gas are reacted with excess hydrogen gas, how many moles of NH₃ are produced?

(a) 3 moles	(b) 6 moles
(c) 6.67 moles	(d) 10 moles

(3) If 6 moles of hydrogen gas are reacted with excess nitrogen gas, how many moles of NH₃ are produced?

(a) 3 moles	(b) 4 moles
(c) 9 moles	(d) 12 moles

(4) Given the reaction below, what is the mole ratio if you are given the mass of $CaCl_2$ and are looking for the mass of NaCl?

$NaOH + CaCl_2 \rightarrow NaCl + Ca(OH)_2$	
(a) $\frac{1}{1}$	(b) $\frac{1}{2}$
(c) $\frac{2}{1}$	(d) $\frac{2}{2}$

(5) An experiment is conducted to find the formula of a hydrate of lead (II) nitrate. (Pb(NO₃)₂•XH₂O). The following mass data was collected:

Mass of empty beaker	12.65 g
Mass of beaker + $Pb(NO_3)_2 \bullet XH_2O$ (before heating)	50.61 g
Mass of beaker + $Pb(NO_3)_2$ (after heating)	38.98 g

What mass of water was lost from the sample?

(a) 11.63 g	(b) 26.33 g
(c) 37.96 g	(d) 38.98 g

Part B: Short Answer (10 Marks)

(1) Calculate the mass of cobalt(III) oxide that will be produced when 2.60 g of cobalt metal reacts with excess oxygen gas according to the equation below. (4)

$$Co_{\,(s)} \ + \ O_{2\,(g)} \ \rightarrow \ Co_2O_{3\,(s)}$$

Name: _____

(2) An experiment is conducted to find the formula of a hydrated calcium chloride. (CaCl₂•XH₂O). The following mass data was collected:

Mass of empty beaker	71.26 g
Mass of beaker + $CaCl_2 \cdot XH_2O$ (before heating)	80.75g
Mass of beaker + $CaCl_2$ (after heating)	75.70g

(a) Complete the following table [1]

Mass of CaCl ₂ •XH ₂ O used	
Mass of CaCl ₂ left after heating	
Mass of water lost	

(b) Find the number of moles of water that was lost by heating [1]

(c) Find the number of moles of calcium chloride left after heating [2]

(d) Use your answers from (b) and (c) above to find the formula of the hydrate $\left[2\right]$

(3) Silver metal may be precipitated from a solution of silver nitrate using copper metal:

 $Cu(s) + 2 AgNO_3(aq) \rightarrow 2 Ag(s) + Cu(NO_3)_2(aq)$

(a) If 10.0g of copper metal is reacted with 30.0g of silver nitrate, determine the mass of silver produced by finding the limiting reagent. (6)

(b) If 20.0 g of silver metal is collected in the lab, calculate the % yield of this reaction (2)