Earthquakes Chapter 16 In Textbook

0

What Is An Earthquake?

 An <u>earthquake</u> is the vibration of Earth produced by the rapid release of energy.

The energy released radiates out in all directions from its source (i.e. <u>focus</u>).
The energy is in the form of <u>seismic</u> <u>waves</u>.

What Causes Earthquakes?

Movement of magma (magma chambers) beneath Earths crust.

3)

2) **Faulting** - rocks break under pressure and stress.

Elastic rebound – rocks release from being stressed.

Elastic Rebound

- First explained by H.F. Reid.
- Rocks on both sides of an existing fault are deformed by tectonic forces.
- Rocks bend and store elastic energy.
- Frictional resistance holding the rocks together is overcome. The rocks rebound to their unstressed state releasing energy as it occurs.

What Is The <u>Elastic Rebound Theory</u>?

- The theory explains how energy is stored in rocks.
 - Rocks bend until the 0 strength of the rocks is exceeded.
 - Rupture occurs and the 0 rocks quickly rebound to an undeformed shape.
 - Energy is released in the 0 form of waves that radiate outward from the fault in all directions.

Rupture and release of energy

Offset produced by the 1906 San Francisco Earthquake

Figure 11.4

The Focus and Epicenter of an Earthquake.

- The point within (or down inside) Earth where energy is released is the <u>focus</u>.
- The point directly above the focus on Earth's surface is the <u>epicenter</u>.

 Adjustments that <u>follow</u> a major earthquake often generate <u>smaller</u> <u>earthquakes</u> called <u>aftershocks</u>.

 <u>Smaller earthquakes</u>, called <u>foreshocks</u>, often <u>precede</u> a major earthquake.

Global Distribution of Earthquakes

Earthquake Depths

Earthquakes originate at depths ranging from 5 to nearly 700 kilometers.

Shallow-focus Earthquakes (surface to 70 kilometers)

Intermediate-focus Earthquakes (between 70 and 300 kilometers)

Deep-focus Earthquakes (over 300 kilometers)

Earthquakes and Plate Boundaries

Divergent Boundaries - <u>Shallow Earthquakes</u> at <u>ridges</u>. DUE TO NORMAL FAULTING AND MOVING MOLTEN.

Transform Boundaries - <u>Shallow Earthquakes</u> along <u>transform faults</u>. DUE TO ELASTIC REBOUND.

Convergent Boundaries – <u>Shallow, Intermediate, and Deep</u> <u>Earthquakes</u> at <u>trenches</u> and therefore, <u>subduction zones</u>. DUE TO MOVING MOLTEN AS WELL AS REVERSE AND THRUST FAULTS.

 The study of earthquake waves is called <u>seismology</u>. The scientists who work in this field are called <u>seismologists</u>.

 <u>Seismographs</u> are instruments that record seismic waves. Seismographs can be vertical and horizontal.

<u>Seismograms</u> are paper printouts that are created by seismographs.

A seismogram (printout). Note the arrivals of p-waves, s-waves, and surface waves.

Types of Seismic Waves

1) **Primary Waves (P-waves)**

Fastest moving waves. First waves to arrive at seismic stations.

	Other Names	Movement Through States of Matter	Speed	Particle Motion
Primary Wave (P wave)	push-pull wave	Solid Liquid Gas	6 km/s	compressional (expansion & contraction)

P-wave

Types of Seismic Waves

2) Secondary Waves (S-waves)

Second fastest waves. Second to arrive at seismic stations.

	Other Names	Movement Through States of Matter	Speed	Particle Motion
Secondary Wave (S wave)	shear wave	Solid	3.6 km/s	shearing motion (horizontal only or vertical only)

Types of Seismic Waves 3) Surface Waves (L-waves) Slowest moving waves. Last to arrive at seismic stations. Travel along Earth's surface.

	Other Names	Movement Through States of Matter	Speed	Particle Motion
Surface Wave (L wave)	long wave	Solid	slowest (10% slower than S wave)	shearing motion (horizontal only)

Most destructive waves since people and property exist on Earth's surface.

• Seismic Waves (Summary):

Surface Waves (L-waves)

- Complex motion (i.e. shearing).
- Causes the greatest destruction.
- Exhibits the greatest amplitude and slowest velocity.
- Body Waves Travel through Earth's interior.
 - Two types:

1)Primary (P-waves)

- •Push-pull (compress and expand) motion.
- •Travels through solids, liquids, and gases.

2) Secondary (S-waves)

- "Shake" motion at right angles to their direction of travel (i.e. shearing).
- Travels <u>only through solids</u>.

This is how we know that the outer core is a liquid!

Measuring the Size of Earthquakes

• Terms:

 Intensity – A measure of the degree of shaking at a given locale based on the amount of <u>damage perceived</u>.

 <u>Magnitude</u> – the amount of <u>energy</u> released at the source of the earthquake (i.e. the <u>focus</u>).

Measuring the Size of Earthquakes

• Two Scales:

Richter	magnitude (energy released)	uses instruments (seismographs)	uses Arabic values <u>Numbers</u>	open-ended scale
Modified Mercalli	intensity (amount of destruction)	uses human observations	uses Roman numerals	closed scale

TABLE 11.3 Earthquake Magnitude and Energy Equivalence				
Earthquake Magnitude		Energy Released* (Millions of Ergs)	Approximate Energy Equivalence	
0		630,000	1 pound of explosives	
1		20,000,000 630,000,000	Energy of lightning bolt	
3		20,000,000,000	Energy of light ling bolt	
4			1000 pounds of explosives	
6		630,000,000,000,000	1946 Bikini atomic bomb test	
7			1994 Northridge Earthquake	
8		630,000,000,000,000,000	1906 San Francisco Earthquake	
0			1980 Eruption of Mount St. Helens	
9		20,000,000,000,000,000,000	1964 Alaskan Earthquake	
10		630,000,000,000,000,000,000	Annual U.S. energy consumption	

*For each unit increase in magnitude, the energy released increases about 31.6 times. *SOURCE:* U.S. Geological Survey.

Copyright © 2005 Pearson Prentice Hall, Inc.

Modified Mercalli Intensity Scale

- I Not felt
- II Felt only by persons at rest
- III-IV Felt by persons indoors only
- V–VI Felt by all; some damage to plaster, chimneys
- VII People run outdoors, damage to poorly built structures
- VIII Well-built structures slightly damaged; poorly built structures suffer major damage
- IX Buildings shifted off foundations
- X Some well-built structures destroyed
- XI Few masonry structures remain standing; bridges destroyed
- XII Damage total; waves seen on ground; objects thrown into air

<u>Richter Scale</u> - Introduced by Charles Richter in 1935. <u>**Magnitude (Energy) Scale</u>**:</u>

- Based on the amplitude of the largest seismic wave recorded.
- Scale increases in <u>amplitude</u> by a factor of <u>10</u> for every <u>increment of one</u>.
- E.g. Difference between Earthquake A (5.0) and Earthquake B (6.0) is 10 times the amplitude.
- E.g. Difference between Earthquake A (5.0) and Earthquake C (7.0) is 100 times the amplitude.
- Scale increases in <u>magnitude</u> (or energy released) by a factor of <u>30</u> for every <u>increment of one</u>.
- E.g. Difference between Earthquake X (4.0) and Earthquake P (5.0) is 30 times the energy released.
- E.g. Difference between Earthquake X (4.0) and Earthquake Y (6.0) is 900 times the energy released.

Locating the Source of Earthquakes

- How to locate the epicenter of an earthquake!
 - <u>Three station recordings</u> are needed to locate an epicenter.
 - Each station determines the <u>time interval</u> <u>between the arrival of the first P-wave and</u> <u>the first S-wave</u> at their location.
 - A travel-time graph is used and the time interval is used to determine each <u>station's distance to the epicenter</u>.

How is an Earthquake's Epicenter Located?

- Seismic Wave Behavior
 - P-waves arrive first, then S-waves, then L-waves.
 - Average speeds for all of these waves is known.
 - After an earthquake, the difference in arrival times at a seismograph station can be used to calculate the distance from the seismograph station to the epicenter. (Travel-time graph).

How is an Earthquake's Epicenter Located?

Distance from focus (km)

How is an Earthquake's Epicenter Located? Why are three station needed?

- Three seismograph stations are needed to locate the epicenter of an earthquake.
- A circle, where the radius equals the distance to the epicenter from the station, is drawn. Direction is unknown!
- The intersection of the three circles locates the epicenter. Go directly below the epicenter and you will find the focus.

Do Core Laboratory 5!

Damage Caused by the 1964 Anchorage, Alaska Earthquake

Damage caused by <u>liquefaction</u> in the Marina District of San Francisco from the 1989 Loma Prieta Earthquake.

Copyright © 2005 Pearson Prentice Hall, Inc.

Earthquake Destruction

- Tsunamis, or seismic sea waves.
- Landslides and ground subsidence.
- Fire.

Can Earthquakes be Predicted?

- Short-range Predictions:
 - Currently, no reliable method exists for making short-range predictions of earthquakes.
- Long-range Predictions/Forecasts:
 - Gives the probability of a certain magnitude earthquake occurring on a time scale of 30 to 100 years (or more).

Most occur at plate boundaries and hotspots! The exception would be places where faulting occurs!