10 4	_				
Μ	വ	м	an	72	1993
IVI	200			1.54	

437	#	6	1,0	1.0	
7-			1.0	.+	

	17.

Date:	1	****	 3.0	4 -14

1. A 60-g golf ball leaves the face of a golf club with a velocity of 75 m/s. If the club exerted an average force of 3.0×10^4 N, what was the time of impact between the club and the ball?

t =

- -2. A-900 N running back moving at 2.0 m/s is stopped in 0.70 seconds when hit by a linebacker.
 - a. What average force did the linebacker exert on the running back?

F =

b. How much did the running back's momentum change?

 $\Delta p =$

- 3. Twin girls, each weighing 500 N, are riding in a car traveling at 20.0 m/s. One girl is wearing a seat belt while the other is not. The car is involved in an accident and the girl wearing the seat belt is brought to a stop in 0.120 seconds. Unfortunately, the dashboard brings the second girl to a stop in only 0.00800 seconds.
 - a. What is the impulse exerted on each girl?

e a laterative and a lateral lateral distribution of

 $\Delta p =$

b. What is the force exerted on each girl?

F =

- 4. The engines of a 1.20 × 10⁵ N tocket exert an upward thrust of 2.00 × 10⁵ N for 1.50 minutes upon lift-off.
 - a. What is the impulse exerted on the rocket?

 $\Delta p =$

b. What is the velocity of the rocket at the end of the 1.50-minute period?

 $v_f =$

