Half-Life

 Not all of the atoms in a sample of radioactive material break down or decay at the same time.

This is a gradual process, but a rate can be determined.

The process itself is measured in terms of the half-life, or the amount of time it takes for 1/2 of the total number of atoms present in a sample to decay.

Radioactive dating

Assume a radioactive isotope with a halflife of 1 million years. What percentage of 'parent material' is left after: - 1 million years? - 3 million?

– 5 million?
– 0?

Problem Type #1: Fraction of parent material remaining

Given the half-life of U-235 is 0.7 billion years, determine the age of a sample of U-235 if 1/16 of the starting material remains.

Given:	Half-life = 0.7 billion years	
	Fraction of parent (U-235) remaining = 1/16	

You must first find out how many half-lives have passed if
 1/16 of the parent (U-235) remains.

Fraction remaining

Problem Type #1: Fraction of parent material remaining

Given the half-life of U-235 is 0.7 billion years, determine the age of a sample of U-235 if 1/16 of the starting material remains.

Given:	Half-life = 0.7 billion years
	Fraction of parent (U-235) remaining = 1/16

You must first find out how many half-lives have passed if
 1/16 of the parent (U-235) remains.

Number	Fraction
lives	remaining
0	1/1
1	1/2
2	1/4
3	1/8
4	1/16

Age = # of Half-lives x Time for 1 Half-life Age = (4)(0.7 Billion years) Age = 2.8 Billion years

Problem Type #2: Mass of parent material remaining

1200 g of a radioactive element has decayed to produce 150 g of the element. If the half-life of the mineral is 0.40 billion years, what is the age of the sample?

Given:

1200 grams decays to 150 grams & Half-life = 0.4 Billion years

You must first find out how many half-lives have passed when 1200 grams decays to form 150 grams

Problem Type #2: Mass of parent material remaining

1200 g of a radioactive element has decayed to produce 150 g of the element. If the half-life of the mineral is 0.40 billion years, what is the age of the sample?

Given:

1200 grams decays to 150 grams & Half-life = 0.4 Billion years

Age = # of Half-lives x Time for 1 Half-life

- **Age** = (3) (0.4 Billion years)
- Age = 1.2 Billion years

Problem Type #3: Decay Graph

Element X has a half-life of 250,000 years. Suppose that 256 g of element X were initially present in a sample of rock.

- (i) Construct a half-life decay graph to illustrate the decay process for 5 half-life periods.
- (ii) How many grams of element X will remain after one million years have expired?

Information Given:

Half-life = 250,000 years

Mass of "X" = 256 grams (Initial amount of radioactive element)

Problem Type #3: Decay Graph

(i) Construct a half-life decay graph to illustrate the decay process for 5 half-life periods.

Number of half lives	grams remaining	percent remaining	% of parent material		 			
0			remaining	ļ	¦	ļ	ļ	<u>[</u>
1			V12279	 	¦		¦	¦
2				 	¦			¦
3						ļ	 	<u> </u>
4				<u> </u>	<u> </u>	1		<u>{</u>
5	Т. 					a161		

Problem Type #3: Decay Graph

(i) Construct a half-life decay graph to illustrate the decay process for 5 half-life periods.

Problem Type #3: Decay Graph

(ii) How many grams of element X will remain after one million years have expired?

You must first find out how many half-lives can pass in 1 million years.

Number of half lives	grams remaining (grams)	percent remaining (%)
0	256	100
1	128	50
2	64	25
3	32	12.5
4	16	6.25
5	8	3.125

# Half-Lives	= <u>Total time</u>
	Time 1 Half-Life
# Half-Lives	= <u>1,000,000 yrs</u>
	250,000 yrs
# Half-Lives	= 4
Answer:	

16 grams will remain after 1 million years.