Half-life

Not all of the atoms in a sample of radioactive material break down or decay at the same time.

- This is a gradual process, but a rate can be determined.
- The process itself is measured in terms of the half-life, or the amount of time it takes for $1 / 2$ of the total number of atoms present in a sample to decay.

Radioactive dating

- Assume a radioactive isotope with a halflife of 1 million years.
- What percentage of 'parent material' is left after:
- 1 million years?
-3 million?
-5 million?
-0 ?

Radioactivity Problems

Problem Type \#1: Fraction of parent material remaining

Given the half-life of \mathbf{U} - 235 is $\mathbf{0 . 7}$ billion years, determine the age of a sample of $\mathbf{U}-\mathbf{2 3 5}$ if $\mathbf{1 / 1 6}$ of the starting material remains.

Given: \quad Half-life $=0.7$ billion years
Fraction of parent ($\mathbf{U}-\mathbf{2 3 5}$) remaining $=\mathbf{1 / 1 6}$
$>\quad$ You must first find out how many half-lives have passed if $1 / 16$ of the parent (U-235) remains.

Number of half lives	Fraction remaining

Radioactivity Problems

Problem Type \#1: Fraction of parent material remaining

Given the half-life of \mathbf{U} - 235 is $\mathbf{0 . 7}$ billion years, determine the age of a sample of $\mathbf{U}-\mathbf{2 3 5}$ if $\mathbf{1 / 1 6}$ of the starting material remains.

$$
\begin{array}{ll}
\text { Given: } & \text { Half-life }=0.7 \text { billion years } \\
& \text { Fraction of parent }(\text { U-235 }) \text { remaining }=1 / 16 \\
\hline
\end{array}
$$

$>\quad$ You must first find out how many half-lives have passed if $1 / 16$ of the parent (U-235) remains.

Number of half lives	Fraction remaining
0	$1 / 1$
1	$1 / 2$
2	$1 / 4$
3	$1 / 8$
4	$1 / 16$

$$
\begin{aligned}
& \text { Age }=\# \text { of Half-lives } x \text { Time for } 1 \text { Half-life } \\
& \text { Age }=(4)(0.7 \text { Billion years }) \\
& \text { Age }=2.8 \text { Billion years }
\end{aligned}
$$

Radioactivity Problems

Problem Type \#2: Mass of parent material remaining

1200 g of a radioactive element has decayed to produce 150 g of the element. If the half-life of the mineral is 0.40 billion years, what is the age of the sample?

Given:

1200 grams decays to 150 grams \& Half-life $=\mathbf{0} .4$ Billion years
You must first find out how many half-lives have passed when 1200 grams decays to form $\mathbf{1 5 0}$ grams

Radioactivity Problems

Problem Type \#2: Mass of parent material remaining

1200 g of a radioactive element has decayed to produce 150 g of the element. If the half-life of the mineral is 0.40 billion years, what is the age of the sample?

Given:

1200 grams decays to 150 grams \& Half-life $=\mathbf{0} .4$ Billion years

Age $=$ \# of Half-lives x Time for 1 Half-life

Age $=(3)(0.4$ Billion years $)$
Age $=$ 1.2 Billion years

Radioactivity Problems

Problem Type \#3: Decay Graph

Element X has a half-life of $\mathbf{2 5 0 , 0 0 0}$ years. Suppose that $\mathbf{2 5 6}$ g of element X were initially present in a sample of rock.
(i) Construct a half-life decay graph to illustrate the decay process for 5 half-life periods.
(ii) How many grams of element X will remain after one million years have expired?

Information Given:

Half-life $=\mathbf{2 5 0 , 0 0 0}$ years
Mass of "X" = $\mathbf{2 5 6}$ grams (Initial amount of radioactive element)

Radioactivity Problems

Problem Type \#3: Decay Graph

(i) Construct a half-life decay graph to illustrate the decay process for 5 half-life periods.

Number of half lives	grams remaining	percent remaining
0		
1		
2		
3		
4		
5		

Radioactivity Problems

Problem Type \#3: Decay Graph

(i) Construct a half-life decay graph to illustrate the decay process for 5 half-life periods.

Number of half lives	grams remaining	percent remaining
0		
1		
2		
3		
4		
5		

Radioactivity Problems

Problem Type \#3: Decay Graph

(ii) How many grams of element X will remain after one million years have expired?

You must first find out how many half-lives can pass in 1 million years.

Number of half lives	grams remaining (grams)	percent remaining $(\%)$
0	256	100
1	128	50
2	64	25
3	32	12.5
4	16	6.25
5	8	3.125

\# Half-Lives	$=$ Total time
	Time 1 Half-Life
\# Half-Lives	$=1,000,000 \mathrm{yrs}$
	250,000 yrs
\# Half-Lives	$=4$
Answer:	
16 g	ms will remain
after	million years.

