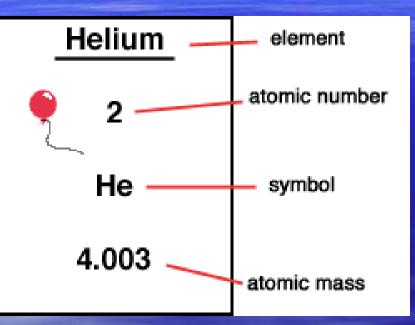
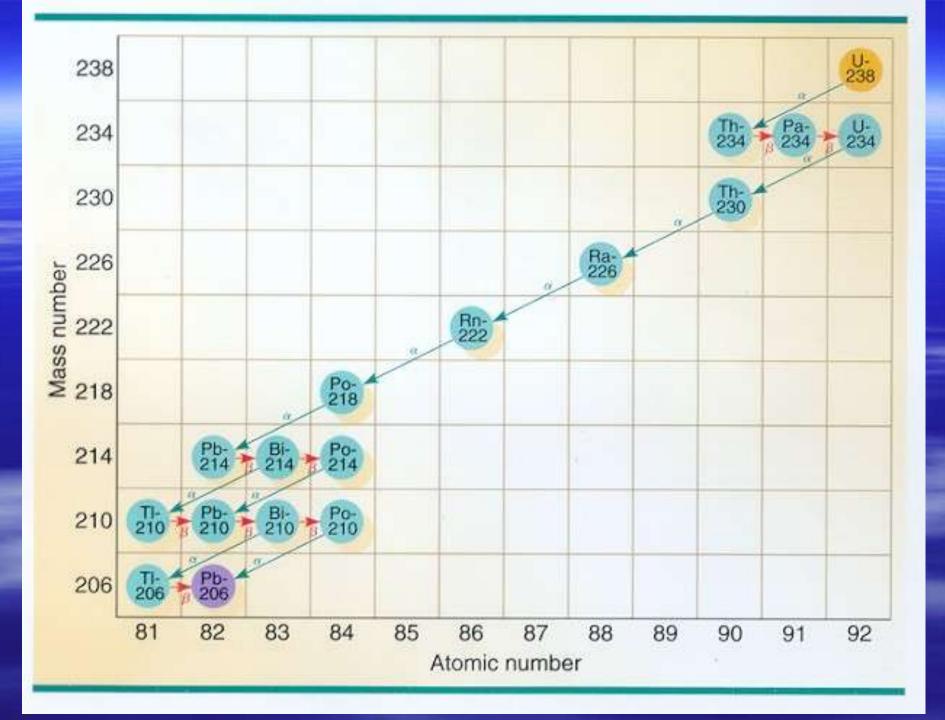

Earth Systems

Lesson 3


Radioactive dating

Assume a radioactive isotope with a halflife of 1 million years. What percentage of 'parent material' is left after: - 1 million years? - 3 million? -5 million?

-0?


Atomic breakdown

Atomic number = # of protons = # of electrons

 Atomic mass = # of protons + # of neutrons
 - Ex: ²³⁸U
 92

238 amu - 92 protons = 146 neutrons

So, as ²³⁸U decays, it loses: 92

10 protons, 10 electrons and 22 neutrons to make ²⁰⁶Pb

82

Half-Life

 Not all of the atoms in a sample of radioactive material break down or decay at the same time.

This is a gradual process, but a rate can be determined.

The process itself is measured in terms of the half-life, or the amount of time it takes for 1/2 of the total number of atoms present in a sample to decay. In Uranium, decay involves the changing of uranium atoms into lead atoms.

- The half-life of the 238 Isotope of Uranium is 4.5 billion years.
- So, if we find a sample of granite where the relationship of *Uranium* atoms and *Lead* atoms is *50/50*, the rock will be <u>*4.5 billion*</u> <u>*years old.*</u>

Remember: The original radioactive material is called the "parent material" while the stuff it breaks down into is called the "daughter" or "decay product"

- Because ²³⁸U has such a long half-life, its used to date only very old rocks.
- In younger rocks, the amount of ²⁰⁶Pb is very small, and can't be measured accurately.
- Also, when we use Uranium to date rocks, we have to take into account that some of the lead may be naturally occurring and not formed from Uranium decay. This lead will make the rock look older than it actually is.

¹⁴C (Radioactive Carbon)

- This is used to date relatively young organic based material.
- It is useful to a maximum of about 75,000 years ago.
- ¹⁴C forms the upper part of the earths atmosphere when ¹⁴N (nitrogen) is affected by high energy cosmic rays

This ¹⁴C can then combine with oxygen and form CO₂.

The CO₂ is the absorbed by plants and used in the photosynthesis process, which then becomes part of the food chain and so on.

- ¹⁴C breaks down to form N
- The half-life of ¹⁴C is 5730 years
- The ratio of ¹²C and ¹⁴C will remain the same in a plant as the atmosphere above it.
 At this early stage none of the ¹⁴C will have decayed.

After 5730 years, only 1/2 the original material will remain.

 By the time ~ 75000 years pass, so little ¹⁴C remains that the actual amount can't be measured accurately so there's a limit on its usage.

So to use ¹⁴C as a dating tool we compare the amount in organic material to the amount that should be there, assuming that the ¹⁴C in the atmosphere remained constant over time.

Substances used in radioactive dating include

- ²³⁸U (Uranium) half life of 4.5 billion yrs and decays to form ²⁰⁶Pb
- ¹⁴C half life of 5730 and decays to form
 ¹⁴N
- ⁴⁰K (Potassium) half life of 1.3 billion years and decays to form ⁴⁰Ar (Argon)
 Note: Argon is a gas, so it can escape a rock making it look younger than it actually is. Geologists study the crystals of the rock, rather than a chunk of the rock itself.