Mineral Properties

- Each Mineral has properties. These depend on:
 - 1. The type of minerals present
 - 2. The arrangement of atoms
 - 3. The strength of bonding

Reference: p 21 - 24

List of properties used to identify minerals:

- 1. Specific Gravity
- 2. Hardness
- 3. Cleavage
- 4. Streak
- 5. Lustre
- 6. Color
- 7. Other Taste, feel, magnetism, acid test, fluorescence

Hardness

- The resistance of a mineral to scratching
- Hardness is expressed in terms of Moh's Hardness
 Scale which ranks relative hardness from 1 10.
- You could use a rhyme to remember the hardness scale:
 <u>Mohs Hardness Scale</u>

Tonight Gypsies Come From Africa On Quads To Catch Dinosaurs

- The following objects can be used when trying to determine the hardness of different minerals.
- If the object scratches the mineral then it is harder than the mineral.

Approximate Hardness of Common Objects	
Fingernail	2.5
Copper penny	3.5
Iron nail	4.5
Glass	5.5
Steel file	6.5

Nail, hardness of 4.5 scratches a mineral.

Approximate Har Common Obj	dness of jects
Fingernail	2.5
Copper penny	3.5
Iron nail	4.5
Glass	5.5
Steel file	6.5

Cleavage

- The tendency of some minerals to break along smooth, flat, parallel surfaces.
- Cleavage directions are determined by atomic structure and strength of bonding.

Cleavage follows areas of weak bonding.

Cleavage Plane Directions

- Minerals show cleavage in many different directions, but most common are in planes of one, two, and three directions.
- Cleavage in one direction (Basal Cleavage).
- Example: Mica displays this type of cleavage.

Because of weak bonds, mica splits easily between "sandwiches"

Positive ions, sandwiched between two sheet silicate layers

- Cleavage in two directions.
- Example: Orthoclase feldspar displays this type of cleavage.

Two planes of cleavage

- Cleavage in three directions.
- Example: Halite displays this type of cleavage.

Fracture

- A mineral that do not have any cleavage planes is said to break by <u>"Fracture"</u>.
- Example is glass or the mineral quartz which is said to have <u>Conchoidal Fracture</u>.

 Another example of a mineral that fractures is Asbestos. This mineral displays a <u>Fibrous</u> <u>Fracture</u>.

